Asymmetric Segregation of the Tumor Suppressor Brat Regulates Self-Renewal in Drosophila Neural Stem Cells
نویسندگان
چکیده
How stem cells generate both differentiating and self-renewing daughter cells is unclear. Here, we show that Drosophila larval neuroblasts-stem cell-like precursors of the adult brain-regulate proliferation by segregating the growth inhibitor Brat and the transcription factor Prospero into only one daughter cell. Like Prospero, Brat binds and cosegregates with the adaptor protein Miranda. In larval neuroblasts, both Brat and Prospero are required to inhibit self-renewal in one of the two daughter cells. While Prospero regulates cell-cycle gene transcription, Brat acts as a posttranscriptional inhibitor of dMyc. In brat or prospero mutants, both daughter cells grow and behave like neuroblasts leading to the formation of larval brain tumors. Similar defects are seen in lethal giant larvae (lgl) mutants where Brat and Prospero are not asymmetric. We have identified a molecular mechanism that may control self-renewal and prevent tumor formation in other stem cells as well.
منابع مشابه
Tumor and Stem Cell Biology Human Brat Ortholog TRIM3 Is a Tumor Suppressor That Regulates Asymmetric Cell Division in Glioblastoma
Cancer stem cells, capable of self-renewal and multipotent differentiation, influence tumor behavior through a complex balance of symmetric and asymmetric cell divisions. Mechanisms regulating the dynamics of stem cells and their progeny in human cancer are poorly understood. In Drosophila, mutation of brain tumor (brat) leads to loss of normal asymmetric cell division by developing neural cell...
متن کاملHuman Brat ortholog TRIM3 is a tumor suppressor that regulates asymmetric cell division in glioblastoma.
Cancer stem cells, capable of self-renewal and multipotent differentiation, influence tumor behavior through a complex balance of symmetric and asymmetric cell divisions. Mechanisms regulating the dynamics of stem cells and their progeny in human cancer are poorly understood. In Drosophila, mutation of brain tumor (brat) leads to loss of normal asymmetric cell division by developing neural cell...
متن کاملDronc caspase exerts a non-apoptotic function to restrain phospho-Numb-induced ectopic neuroblast formation in Drosophila.
Drosophila neuroblasts have served as a model to understand how the balance of stem cell self-renewal versus differentiation is achieved. Drosophila Numb protein regulates this process through its preferential segregation into the differentiating daughter cell. How Numb restricts the proliferation and self-renewal potentials of the recipient cell remains enigmatic. Here, we show that phosphoryl...
متن کاملMechanisms of asymmetric cell divisions in Drosophila melanogaster neuroblasts
Stem cells possess the properties of self-renewal and differentiation, and mainly rely on two strategies for division, including symmetric and asymmetric cell divisions. In this review, we summarize the latest progress on asymmetric cell divisions in Drosophila melanogaster neuroblasts (NBs), which focus on the establishment of cell polarity, mitotic spindle orientation, the asymmetric segregat...
متن کاملProtein phosphatase 2A regulates self-renewal of Drosophila neural stem cells.
Drosophila larval brain neural stem cells, also known as neuroblasts, divide asymmetrically to generate a self-renewing neuroblast and a ganglion mother cell (GMC) that divides terminally to produce two differentiated neurons or glia. Failure of asymmetric cell division can result in hyperproliferation of neuroblasts, a phenotype resembling brain tumors. Here we have identified Drosophila Prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 124 شماره
صفحات -
تاریخ انتشار 2006